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1 Simple Artinian Rings, the Artin-Wedderburn Theorem,
Idempotents, and Modules of Semisimple Rings

1.1 Simple artinian rings

Let R be a nonzero ring. Recall that R is semisimple if it is semisimple as a left R-module
(direct sum of simple R-modules). Last time, we showed that if R is semisimple, then R
is a finite direct sum of its minimal left ideals. So R is left artinian (i.e. it satisfies the
descending chain condition on left ideals).

Proposition 1.1. A left artinian simple ring is semisimple.

Remark 1.1. You might think “of course a simple ring should be semisimple!” But simple
was defined with respect to 2-sided proper ideals, and semisimple was defined with respect
to 1 sided ideals.

Proof. Let R be left artinian and simple. Then we have R ) J1 ) J2 ) · · · , with ideals Ji,
which stops at a minimal left ideal. Set M =

∑
Ni, where Ni are the sumple (minimal) left

ideals. If N ⊆ R is simple and r ∈ R, then we get a surjection of left R-modules N → Nr.
Since N is simple, the kernel must be 0 or N . So Nr

∼= N , or Nr = 0. So Nr ⊆ M . This
is true for all N , so Mr ⊆M . So M is a 2-sided ideal. R is simple, and M 6= 0, so M = R.

By a lemma from last time, R =
∑k

i=1Ni, where Ni is a minimal left ideal (choose k
minimally). To show that R is a direct sum, we have that for Mi =

∑
j 6=iNj , M∩Ni = 0

or Ni. But if it is Ni we contradict minimality. So we must have M∩Ni = 0. By Schur’s
lemma, all Ni occur. Thus, R =

⊕k
i=1Ni.

1.2 The Artin-Wedderburn theorem

Theorem 1.1 (Artin-Wedderburn1). A nonzero ring is semisimple if and only if it is
isomorphic to a finite product of matrix algebras over division rings.

1Wedderburn is pronounced with a w sound, not a v. He was Scottish, although his name looks German.
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Proof. ( =⇒ ): We have Rop → EndR(R) given by r 7→ (s 7→ sr). If R is semisimple,
then R = Nn1

1 ⊕ · · · ⊕ Nnk
k , where Ni are the distinct simple R-modules. Now Rop ∼=

EndR(Nn1
1 ⊕· · ·⊕N

nk
k ) ∼=

∏k
i=1Mni(D

op
i ). By Schur’s lemma, Di = EndR(Ni) is a division

ring.
( ⇐= ): If R =

∏k
i=1Mni(Ei), where Ei is a division ring, the simple left R-modules,

Ni = Eni
i for some i, are sets of column vectors. Then R ∼= Nn1

1 ⊕ · · · ⊕N
nk
k .

Corollary 1.1. R is left artinian and simple if and only if R ∼= Mn(D), where D is a
division ring.

Corollary 1.2. R is semisimple if and only if R is isomorphic to a finite direct product
of left artinian, simple rings.

Corollary 1.3 (Wedderburn). An algebra over a field F is semisimple if and only if it
is isomorphic to a product of simple, finite dimensional F -algebras. A finite dimensional
F -algebra is simple if and only if it is isomorphic to Mn(D) for n ≥ 1, where D is a finite
dimensional F -division algebra.

Definition 1.1. An F -algebra is central simple if it is simple and F is its center.

Proposition 1.2. If D is a finite dimensional division algebra over an algebraically closed
field F , then D = F .

Proof. Let γ ∈ D. Then γ commutes with F , so F (γ) is a field extension of F . Since D is
finite dimensional over F , F (γ)/F is algebraic. So F (γ) = F , and we get γ ∈ F .

Corollary 1.4. Any finite dimensional semisimple F -algebra with F algebraically closed
is isomorphic to

∏k
i=1Mni(F ) for some ni, k.

Corollary 1.5. A commutative semisimple algebra over a field F is a finite product of
finite field extensions of F .

1.3 Idempotents

Definition 1.2. An element e ∈ R is idempotent if e2 = e.

Definition 1.3. Idempotents e, f ∈ R are orthogonal if ef = fe = 0.

If e, f are orthogonal, then (e+f)(e+f) = e2 +f2 = e+f , so e+f is also idempotent.

Definition 1.4. An idempotent e is primitive if eR is not a product of to two subrings
of R.

Lemma 1.1. R ∼=
∏k
i=1Ri, where Ri are rings, if and only if there exist mutually orthog-

onal e1, . . . , ek ∈ Z(R) with e1 + · · ·+ ek = 1.
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Proof. ( =⇒ ): Suppose R ∼=
∏
iRi. Then let ei be the identity of Ri.

(⇐= ): Let e1+· · ·+ek = 1, where ei ∈ Z(R) are mutually orthogonal idempotents.

Such idempotents are called primitive central.

Example 1.1. The ring
∏k
i=1Mni(Di) has ei = idMni (Di) = Ini .

1.4 Modules of semisimple rings

Lemma 1.2. If M is a simple module over a semisimple ring, then M is a direct summand
of R.

Proof. Write R =
∏k
i=1Mni(Di). This has central idempotents ei = idMni (Di). M is

simple, so since M ∼=
⊕k

i=1 eiM , we get that eiM = M for some i. Then Mni(Di) toM
sending 1 7→ m 6= 0 is a surjection. SO Mni(Di) mod the direct sum of all but one colimns
is isomorphic to M . But then Mni(Di) is isomorphic to a direct sum of columns, so the
surjection Mn(Di)→M is split. So M injects into R as a summand.

Theorem 1.2. The following are equivalent:

1. R is semisimple.

2. Every R-module is semisimple.

3. Every R-module is projective.

4. Every R-module is injective.

Proof. (2) =⇒ (1): This is a special case.
(2) =⇒ (3): Simple modules are summands of R by the lemma, so they are projective.

So semisimple modules are projective.
(3) ⇐⇒ (4): Suppose every module is injective. Then look at

0 ker(π) R P 0π

Then ker(π) is injective, so ker(π) → P splits. Then R → P splits. The same works the
other way.

We will finish the proof next time.
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